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LETTER TO THE EDITOR 

Critical dynamics of the one-dimensional generalised 
kinetic Ising model 

Ya’akov Achiamt 
Nuclear Research Centre-Negev, PO Box 9001, Beer-Sheva and Department of Physics 
and Astronomy, Tel-Aviv University, Israel 

Received 29 January 1980 

Abstract. A time-dependent real-space renormalisation group is used to show that all the 
one-dimensional kinetic king models with transition rate that depends on nearest neigh- 
bours only, belong to the same universality class of the critical dynamics. 

In spite of the recent development in the understanding of critical dynamics, the 
dynamic scaling hypothesis still has the status of a hypothesis. Therefore it is important 
to show the existence of universality classes. In this Letter we would like to present a 
universality class, the kinetic Ising model. This is possible due to the renormalisation 
group (RG) technique which enables us to gain information on the kinetic behaviour of 
the system without actually solving the model. The kinetic king model (KIM) (Glauber 
1963) is the simplest and the most commonly studied model for a non-equilibrium 
critical dynamics. It is also one of the few models for critical dynamics which has an 
exact solution in some special cases. Since Glauber (1963) gave a solution to the 
one-dimensional ( 1 ~ )  case, the model has been generalised to higher dimensionalities, 
and has been studied using conventional methods (Kawasaki 1972 and references 
therein) and by the modern (RG) technique (Achiam 1978, 1980, Achiam and Koster- 
litz 1978, Hohenberg and Halperin 1977). 

The kinetics of the model is introduced by a transition rate W,(a,) between the two 
spin states, a, = *l. Glauber (1963) has already pointed out that the transition rate 
determined by the detailed balance is not unique. Since the model is an empirical one, 
there is no a priori reason to choose one form of W and not another. Two forms of W 
are usually used. The one originally chosen by Glauber (1963) is 

W,(U,)  = (1 -a, tanh E,)/2, (1) 
where E, is the reduced field at site i contributed by the nearest neighbour (NN) a,, 
E, = K C, U,. The second choice, which is commonly used for the real-space RG 
calculations (Achiam and Kosterlitz 1978), is 

WP (at) = ( P e ( - ~ z ) / P e ( ~ i ) ) ” ’ ~  (2) 
where Pe(-a , )  is the equilibrium probability distribution of the set of spins {a,}, where U, 

has been substituted by -aI. Recently, J C Kimball (1979, unpublished report, 
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Berkeley, California) studied a 1~ KIM with a transition rate which does not vanish as 
the temperature goes to zero. He found a critical slowing-down similar to the one found 
in Glauber’s original model, and a faster transient. 

In this Letter we present an RG analysis of a generalised 1~ Glauber model. This 
generalisation, which has already been suggested by Glauber, includes Kimball’s Was  a 
special case. There are two reasons for carrying out the following study of the 
generalised model. 

The first one is to study a variety of W’s belong to the generalised model. We found 
for all of them the same critical slowing-down; hence the details of W are irrelevant (in 
the RG sense), and all these kinetic models belong to one universality class, in agreement 
with the dynamic scaling hypothesis (Halperin and Hohenberg 1969, Ferrel eta1 1968). 
This result is obtained by applying the decimation RG transformation (Nelson and 
Fisher 1975) which can be performed exactly in 1 D. 

The second reason is that the RG study of the generalised model, and in particular of 
Kimball’s case which belongs to it, enables us to understand better how transients enter 
into the time-dependent RG (TRG) analysis. 

The 1~ KIM assumes that the spin system { g I }  relaxes by a series of single spin flips. 
The equilibrium probability distribution Pe({vl}) is characterised by a reduced Hamil- 
tonian H = (XI cr1E1)/2. The master equation which describes the KIM is 

r d N d ,  t ) ldt  = -1 ( W ( a l ) P b 1 ,  4- W ( - v P ( - g 1 ,  t ) ) ,  (3) 
I 

where by W(-o;)P(-cr,, t )  we mean that all the other spins, j # 1, have the same value 
as in the LHS of (3), and r is the relaxation time of a single spin with the heat bath. The 
following assumptions determine the spin-flip rate W,: (i) only one spin changes at a 
time; (ii) the Wl’s fulfil the detailed balance; (iii) the Wl’s depend only on the NN spins of 
i ;  (iv) the Wl’s are invariant under a spin reversal. Assumption (i) was used in 
expressing equation (3) in its present form. Assumption (ii) means that W,(CT,)P(~~) is 
independent of the value of 0; (Achiam and Kosterlitz 1978). Both equations (1) and 
(2) are examples of such W,’s. Assumption (iii) states that a whole set of W’s is obtained 
by multiplying a certain form of W,, say Wp (2), by a function f(gLUl, ~ r + ~ ) .  Assump- 
tion (iv) restricts f to be of the form 

f = U + bgl-lui+l. (4) 
The information on the critical behaviour of the KIM is obtained by applying the RG 

transformation to the master equation. In this Letter we use the simple RG decimation 
transformation (Nelson and Fisher 1975). That is, we perform a trace over the two 
values of each second spin in the master equation (3). This procedure is equivalent to 
scaling the space by a factor b = 2. We examine P(u,  t )  = P,(a)q!J(g, t ) ,  where the 
perturbation from equilibrium, 4, is given in the linear response approximation by 

This pertwbation forms under the TRG transformation an invariant subspace of 
perturbations (Achiam 1979a). 

It is convenient to write the master equation using (2), ( 5 )  as 

7 dP(a,  t)/dt = -E Pew? (upi + bgi-lo;.cri+l). (6) 
i 

The RG transformation is performed by summing each second spin over its two values. 
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The RG transformation of the LHS is the usual static decimation (Nelson and Fisher 
1975) 

where the prime means that K and h are replaced by K' and h' respectively such that 
RG[P(V, dl = P ( P ,  t )  (Pa =*I), (7) 

K'  = tanh-'(tanh* K) ,  h'( t )  = Ah(t), A = 2. (8) 

The RG transformation of each term in the RHS of (5) is performed exactly as for the 
LHS. The transformation can be easily performed when one recognises that P, Wi is 
nothing other than P, in which the interactions around cri have been put to zero 
(Achiam and Kosterlitz 1978). The transformation of similar expressions (in a different 
context) has been done elsewhere (Achiam 1979b). We quote here the results: 

RG[Pe WA ( U V ~  + b ~ i - ~ ~ i i a i + l ) ]  = -E Pk ( ~ ( 1 )  W f  ' ( ~ a ) ( a ' P o l +  b'~a-1~c+cz+1), 
(1 

where 
cosh Klcosh 2K 

(;)'=a(;), n = (  0 sinh Klcosh 2K 

The TRG transformation is terminated by scaling the timescale T :  

T' = bzT, b' = A/w,  (10) 

where w is the largest eigenvalue of n. This scaling will leave the master equation 
invariant under the TRG. Standard RG arguments associate z with the dynamic critical 
exponent (Hohenberg and Halperin 1977). 

The term in W associated with a is the one contributing the slow mode; the term 
with the b is responsible for the transient. However, as we approach the fixed point of 
the RG transformation, K" = CO, the two eigenvalues of become identical. Only one 
slow timescale with z = 2 characterises the system. The above description is changed 
when more spin operators are included in 4. In this case there are contributions to the 
term linear in U from higher-order terms, while after the renormalisation, the linear 
term contributes only to itself. Hence the slowest timescale, associated with the largest 
eigenvalue of a, is the same as before. The fast transients will be fast even at the fixed 
point. 

We would like to thank Dr J C Kimball for sending us his work prior to publication, and 
Dr D Chuchem for his advice. 
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